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Closed-form and finite-element solutions are presented for thermal bend-

ing and stretching of laminated composite plates. The material of each layer

is assumed to be elastically and thermoelastically orthotropic and bimodular,

i.e., having different properties depending upon whether the fiber-direction

normal strain is tensile or compressive. The formulations are based on the

thermoelastic version of the Whitney-Pagano laminated plate theory, which in-

cludes thickness shear deformations. Numerical results are obtained for de-

flections and neutral-surface positions associated with normal strains in both

of the in-plane coordinates. The closed-form and finite-element results are

found to be in good agreement.

I INTRODUCTION

As the use of fiber-reinforced composite materials becomes more wide-

spread, there is ever increasing interest in predicting the thermostructural

behavior of plates constructed of such materials. One of the interesting

characteristics of certain fiber-reinforced composite materials is that they

exhibit quite different elastic properties when loaded along the fiber direc-

tion in tension as opposed to compression. This was observed experimentally

School of Aerospace, Mechanical and Nuclear Engineering, University of
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for cord-rubber composites by Clark (1 )tand Patel et al. (2). 1e first

attempt to formulate a theory of elastic behavior of such materials was made

by Ambartsumyan (2), and a comprehensive theory consistent with experimental

results was presented in (4).

Although there have been a number of thermoelastic analyses of bimodulus-

material plates (5-9), they have all been limited to isotropic bimodulus

materials and temperature changes symmetric about the midplane of the plate.

The present work is more general than any existing analyses known to the

authors in four different respects:

1. The material of each layer is elastically orthotropic and bimodular.

2. The material of each layer is thermoelastically orthotropic and bi-

modular, as shown to be possible physically in a recent micromechanics

analysis (10).

3. Both single-layer orthotropic and cross-ply laminated plate con-

structions are considered.

4. Transverse shear deformation is included.

5. Temperature changes through the thickness as well as in the plane

are considered.

2 GOVERNING EQUATIONS

The equations developed here constitute the thermoelastic extension of the

Whitney-Pagano shear-flexible laminated plate theory (11)

The origin of .a Cartesian coordinate system is taken to be in the mid-

plane (xy plane) of the plate with the z axis being normal to this plane and

directed downward.

The thermoelastic constitutive relations for each layer (1) are taken to

t References are given in Appendix A.
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be orthotropic and bimodular as follows:

a y " Q12ki Q22ki 0 Ey - a 2kiT (1)

Txy 0 0 Qkk Yxy

T yz C 440L y
[C (2)

T xz • 0 C ss0L Y xzJ

Here a and a are in-plane normal stresses, T is in-plane shear stress,

Tyz and Txz are transverse shear stresses, cx and cy are 
in-plane normal

strains, yxY is in-plane engineering shear strain, yyz and yxz are transverse

engineering shear strains, T is temperature change measured from the strain-

free temperature, the C's are Cauchy elastic shear stiffnesses, the Q's are

plane-stress reduced stiffnesses, and the a's are thermal-expansion coeffi-

cients. The third subscript in QijkL and CijkU (and second in ajkL ) refers to

the bimodular characteristics: kl denotes properties associated with fiber-

direction tension, k=2 denotes fiber-direction compression, and k-0 signifies

that the property does not depend upon fiber-direction strain. Also, sub-

script L refers to the layer number, i.e., t=l and 2 for a two-layer laminate.

The stress resultants and stress couples and thermal stress resultants

and couples are defined in the standard manner, i.e.,

(Nx Ny 'y'x) . fJh/2 (xyxy 9Tyz' xz)dz

(MxM y ) ( h/2 )zdzx y -h/2 (x' y xY~z
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(N TNT) U f (hllikti'kt + Ql ~k)(l,Z)T dz (3)

(NxT x -h/2 2z'k

(N 'M ) h/2 (Q12kzO'1kx + Q22kZcl2kL)(lz)T dz

where h is the total laminate thickness.

The displacements u,v,w in directions x,y,z at an arbitrary location

(x,y,z) are given by

u(x,y,z) - u0(x~y) + z*vi,xy)

v(x,y,z) - v0(x,y) + Z* y (x,y) (4)

w(X,y.Z) = w0(x~y)

Here u0'v 0'w 0 are the displacements at the midplane, and *and are the

bending -slopes.

Substituting equations (4) into the well-known linear strain-displacement

relations of elasticity theory in Cartesian coordinates, and then using

equations (1) and (2) in equations (3), one obtains the thermoelastic con-

stitutive relations for the laminate as follows:

N~ +NT All A1  0 B11/h B1 h 0

N y+NTy A12  A22  0 B12/h B22/h 00s

N XY0 0 A66  0 0 B66/h vox+U 09y 5

(MX + M )/h -811/h B12/h 0 Djj/h2  D12/h2  0 h '

(M +M)/h 812/h B22/h 0 D12/h2  D22/h2  0 hip~y y '

M /h 0 0 866/h 0 0 B66/h2  h* + h*jxy Y.,x x'yj
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Qx 0 Sss wox 
+ 40x(6

Here a comma denotes differentiation, i.e., ( ),x  a( )/ax.

As usual, the stretching, bending-stretching coupling, bending and trans-

verse shear stiffnesses for the laminate are defined as

rh/2
(Aij'Bij'Dij'Si i) = J-hi2 (Qij'QiJ zgQjzasK2Cii)dz (7)

where K is the transverse shear coefficient to provide for the nonuniform

transverse-shear strain distribution through the thickness (L2).

Neglecting distributed forces, body moments, and inertial effects, one

can write the equations of equilibrium as

Nx, x + N = 0 ; Nxy,x.+ Nyy M 0 ; Qx'x + Qy'y 0

(8)
• 1xx + M -xy'y Qx = 0 ; Mxy~x + My y - Qy - 0

Substituting equations (5) and (6) into equations (8), one obtains the

following coupled thermoelastic equilibrium equations in terms of the

generalized displacements:

u° 0NT 
1

XX

v0  NT
yy

ELkL] w°  0 , (k,t-1,2,3,4,5) (9)

y x'x

5
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where [Lk±] is a symnetrix linear differential operator matrix with the

following elements:

2 + A66d2 L25 L14

L12 (A12 + A66 ) dxdy L33 - Sssd -$44d

13 0L 34  - S4L13 0 L3 ~ y

L1 4  (B12 + B66) dxdy L35  " Sssd (10)

Lls- B11d2 + B66d2 L4 D66d2 + D22dy -S44

x y yL2BA66dx + A22d y L45 (D12 + D66)d dy
22 dxdy

L23 0 L55 D11d + D6 6dy - Ss5

L24* B66d + B22d d a/x

Except for the presence of the generalized thermal-force terms appearing

on the right side and the absence of mechanical pressure, equations (9) are

identical to those presented recently in (13).

3 CLOSED-FORM SOLUTION

Guided by the closed-form solution presented in (13) for a freely

supported, laminated, bimodulus, rectangular plate subjected to a sinusoidally

distributed normal pressure, we consider here the same class of plate and

geometry but subjected to sinusoidal distributions of midplane temperature and

temperature gradient through the thickness. Thus, the temperature distribution

is given by

T(x,y,z) = T (x,y) + (z/h)Tl(x,y) (11)

where, here

6



To 0 sin ax sin By, T1 ? sin ax sin By
(12)

a ir/a, Bmw/b

and a and b are the lengths of the plate sides parallel to the x and y axes,

respectively.

The boundary conditions are freely supported, i.e., simply supported

flexurally and unrestrained in the in-plane directions normal to the edges.

Along the edges located at x=O and x-a:

Nx = v0 . w- Mx a *y = 0 (13)

Along the edges located at y-O and yub:

u Ny = w a My a = 0 (14)

For the temperature distribution and boundary conditions specified above,

the governing equations are satisfied exactly in closed form by the following

distributions of generalized displacements:

u0 = U cos ax sin By

v° 0 V sin ax cos By

w a W sin ax sin By (15)

h*y - Y sin ax cos By

h x a X cos ax cos By

The values of the coefficients U,V,W,Y, and X are obtained by solving the

following linear matrix equation obtained by substituting solutions (15) into

governing equations (9):

7
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V AT"'yy

[Cki] W z 4 0 , (k,Z=l,2,3,4,5) (16)
Y [ ATX'x

X ATk yy

where [Ckt) is a symmetric matrix containing the following elements:

C1 1  - 66- AS 2  C25  C14

C12  - (A12 + A66)0 C33  - S55
2 -S4

C13  0 C34  - S44

C14  - (B12 + 866 )0 C35  - SssO2

(17)
Cjs s - Bj1cL

2 - B6 68
2  C44z - D6 60

2 - 02202 -S4

C22  -A66
2 - A220

2  C45  - (012 + D6 6)18

C2 3  0 C5 5  - 01 1c 2 - D6682 - S55

C24 S - B66 2 - B220
2

and the quantities on the right side are defined by

i, -T T -T =Ty/iAT = N /cos ax sin By , y N /sinxcosSy
X~ x xx yoy Byy

(18)
RT  MT /cosax sin oy AT MT /sinaxcos y
XX XX y,y ,y/

Even in the case of a single-layer plate of bimodulus material as con-

sidered in (14), the plate stiffnesses Aij, Bij, and Dij depend upon the

neutral-surface position (denoted by zn) associated with the fiber-direction

strain. In the case of a cross-ply plate, as considered in (13), these
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stiffnesses depend upon both znx (in the layer oriented in the x direction)

and Zny (in the other layer, which is oriented in the y direction). It is

noted that the transverse shear stiffnesses are unaffected by znx and Zny.

To determine the neutral-surface location, we use the kinematics of

deformation, i.e.,

ea0 u?Z0 0 ?(9
x x x,x y y + y,y 19)

Then, using equations (15), we obtain

Znx u? Ux/*x'x  hU/X

(20)
Zfny - V/y,y hV/Y

In the present thermoelastic case, not only the Aij, Bij, and 0.. stiff-

nesses depend upon Z nx dnd zny, but also do the generalized thermal forces

T
NT and M The detailed form of these dependences are a function of the

nature of the signs of Znx and zny; they are developed for various possible

cases in Appendix B.

In principle, one could develop a set of explicit relations for deter-

mining znx and z ny. However, the extreme complexity of the algebraic struc-

ture of the resulting equation renders this approach impractical. Thus, an

iterative procedure analogous to that used in (12,13) for mechanical loading

is adopted here. The procedure turns out to be computationally quite

efficient.

4 FINITE-ELEMENT FORMULATION

As pointed out in the previous section, an exact closed-form solution

to equations (9) can be obtained only under special conditions of geometry,

edge conditions, loadings, and lamination. Here we present a simple finite-

9
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element formulation which does not have any limitations (except for those

implied in the formulation of the governing equations)(l5,16).

Suppose that the region R is subdivided into a finite number N

of subregions: finite elements, Re (e=l,2,...,N). Over each element the

generalized displacements (u0,v oWx, y) are interpolated according to

0 r 0=r 1 2=

u E , v r l , w = s
1 1 1

(21)
p 3 p 3ox =  a i' x i~ a By i~ i

11
where €i(a=1,2,3) is the interpolation function corresponding to the i-th

node in the element. Note that the in-plane displacements, the transverse

displacement, and the slope functions are approximated by different sets of

interpolation functions. While this generality is included in the formu-

lation (to indicate the fact that such independent approximations are possible),

we dispense with it in the interest of simplicity when the element is actually

= 2 3programmned and take 0= = o (rxszp). Here rs, and p denote the number

of degrees of freedom for each variable. That is, the total number of degrees

of freedom per element is 2r + s + 2p.

Substituting equation (21) into the Galerkin integrals associated with

the operator equation (9), which must also hold in each elementRe,

fe (ELJ{6} - {f){Odxdy = 0 (22)
Re

and using integration by parts once (to distribute the differentiation equally

between the terms in each expression), we obtain

10



[K11JEK12)E][ K'CKL4] 0'

[K22]EK23)CK21I]CK 2S) (.v 0O (I

CK33JCK34JfK35J (w0 ) I F3} (23)

Symmetric [K44]CK45) (*X I (F4}

CKS5 ]J e ( e (F5) e

where the (u 1,1 j0 , etc. denote the columns of the nodal values of u0  V,

respectively, and the elements K ( L$,,.. 5 of the symmietric stiffness

matrix and F of the force vector are given by

=I - 4~ A 6Gy' K;U - 8660. +B 213 13 13j 82~

KI A~zGxy + A66Gxy Qi + S
13 1i 31 i S55SI +S4,SX.

KP - 0 K -=S,5Rxo
13 13ijI

Kl = 811H'. + B66HX- KQ1 13 13 43Y1

44 (24)
KL BO + 866H'y K. 2 D11Tx~ + D66TX . + S55T?.

K; A22G . + A6,Gx. K45 Ojj T'5 + D66TM

W~ -=0 KM = 66T' + D21* S44 TO

K2 x 66HX + BIAH

J f dx dy T~ 3 M .xd
e e

F yO= dx dy FT3M j d dy (25)

e e
3
F1 0



where

G§= 1 0 dx dy (l,j=l,2,..,r)Re fl ie j n

1§ e = 0 3ndx dy (i=l,2,.. ,r ; j=l,2,...,t)

M§= J 0 2 dx dy (i=l,2,...,r ; j=1,2,...,s)

S§ e = dx dy (i,j=l,2, ..,s) (26)

ij e 'i,g'j,n "

R§J f dx dy (i=1,2,... ,s ;j=1,2,... ,t)
e

T§ 0 dx dy (i,j=l,2,...,s)

and G. = Gij, etc. In the special case in which = = i' all of the

matrices in equation (26) coincide.

In the present study, elements of the serendipity family are employed

with the same interpolation for all of the variables. The resulting stiffness

matrices are 20 by 20 for this four-node element and 40 by 40 for the eight-

node element. Reduced integration (17,18) must be used to evaluate the matrix

coefficients in equation (24). That is, if the four-node rectangular element

is used, the lxl Gauss rule must be used in place of the standard 2x2 Gauss

rule to numerically evaluate the coefficients Kij.

Substituting solution (23) into equations (20), we get

Znx a -(u',)pI zny )*o,y

12



5 NUMERICAL RESULTS

As a check on the validity of the equations and their computational

implementation, it is desirable to compare the present predictions with those

given in the literature for special cases. Apparently there is a dearth of

solutions of plates bent by a sinusoidally distributed thermal gradient. How-

ever, it was possible to compare with isotropic, thin plate results given by

Boley and Weiner (19) as listed in Table 1. As can be seen, the agreement is

quite good.

As examples of orthotropic bimodulus materials, the same materials as

considered in (13,14) are used, namely, aramid-rubber and polyester-rubber.

The elastic properties, obtained from experimental results of (2) using the

data-reduction procedure presented in (4), are listed in Table 2. Unfortunately

there are no measured values available for the thermal-expansion coefficients

of these materials. However, the micromechanics analysis of bimodular action

presented in (10) suggests that the thermal-expansion coefficients of these

materials should also depend upon the sign of the fiber-direction strain. Thus,

for the numerical calculations presented here, it is assumed that the following

relationships hold:

t c t c0.5 t t
/, - 0.5 ; 2/4 1.0 ; 1/2 0 0.1

Numerical results are presented for relatively thick plates (b/h10)

with a temperature distribution having a temperature gradient through the

thickness but no mean temperature change, i.e., To=0. Table 3 gives results

for single-layer orthotropic plates of various aspect ratios.

As can be seen, there is good agreement between both dimensionless de-

flections and neutral-surface locations as predicted by the finite-element

13
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and closed-form solutions. In fact, the largest difference appearing in the

table are 0.15% for W, 0.18 for Zx , and 1.3% for Zy.

Table 4 shows the finite-element and closed-form solutions for dimension-

less deflections and neutral-surface locations of two-layer cross-ply (00/900)

simply-supported rectangular plates subjected to sinusoidal thermal loading.

The finite-element results are in close agreement with the closed-form results.

It should be mentioned that composite materials typically have much lower

ratios of thickness shear moduli to in-plane Young's moduli than homogeneous,

isotropic materials (G/E = 1/3 to 1/2). In contrast, aramid-rubber has

Gxz/E x = 0.001 when the fiber-direction strain is tensile, but 0.416 for com-

pressive fiber-direction strain.

Figure 1 presents the influence of the aspect ratio and side-to-thickness

ratio for single-layer and two-layer cross-ply plates under sinusoidal thermal

loading (material: polyester-rubber). The effect of thickness on the deflec-

tion is more pronounced than the effect of the aspect ratio.

Figures 2 and 3 show the effect of the aspect ratio (a/b) and side-to-

thickness ratio (b/t), respectively, on the location of neutral surfaces for

a single-layer, orthotropic, bimodulus, simply supported rectangular plates

under sinusoidal thermal loading (material: aramid-rubber, fo=O.O, tf=l.0).

Similar results are presented in Figures 4 and 5 for a two-layer cross-

ply (00/900), rectangular plate of polyester-rubber under sinusoidal thermal

loading. Note from Figure 5 that the neutral-surface locations are virtually

unchanged for side-to-thickness ratio greater than 25.

14



6 CONCLUSIONS

On the basis of the excellent comparisons with existing results for homo-

geneous-material plates and the comparisons with a closed-form solution for

laminated bimodulus composite-material plates, the mixed finite element for

thick plates as presented here is considered to be validated.
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APPENDIX B

DERIVATION OF EXPRESSIONS FOR THERMAL FORCES AND MOMENTS

Case I

For Case I, Znx > 0 and Zny < 0 with Znx governing layer 1 (00) and zny
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layer 2 (900).

zN, °  (Q+Q 22 °22Td
x h/2 (Q1122 0 122 222 222)T (Ql 112 + Q1212 0212 )T dz

+n nx( +Q) d-1h2()o2, Td

+ l121 +)21  1 221 02 2 1  dz .'( 11 0111 Q1211 0211)T dz
Znx

Let

(Q1122 0122 
+ Q

1222 'L222 ) 8122 (Q1112 '3112 Q1212 O212) = 8112
(B-2)

(Q 1121 (1121 + Q1 221 221) 121 (Q111 1 "111 
+ Q12 1 1 "211

) = 8111 , etc.

Then,

NT  [6 To(zn + h/2) + 0 To(0Oz + -TO)x [8122 z112 0 Zny+ 8121 oZnx

+ 8111 T(h/2- zn) + 8 (T/2H)(Zy -h2/4)

+ B112(T1/2h)(0-Z~y) + 8+21(Tl/2h)(Z2 -0)

+ 811 (Tl/2h)(h2/4- Z2x)]sin ox sin By

or

Nx  E(8122  8111)(Th/2) + (8121-8111) toZnx + (122-8112 ToZny

+ (111 -8122)(Tjh/8) + 121 811)(TlZ2x/2h) (8-3)

+ ('122 -8112)(TlZy/2h)]sin ax sin sy

Similarly,
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NT (222 + )(Toh12) + (1221 "'211 ) toZnx + (0222- 212) Tozny

+ (0211 - 222)(T1h/8) + (0221 "B211)(T'Izx/2h) + (B222 -B 212) (8-4)

(Tl z2/2h)sin ax sin BY
N1OW,

Now,

T h/2 0  Znx h/2
Mx a -h/2 B122 Tz dz + 1 12 Tz dz + I B121 Tz dz + 8111 Tz dz

Zn¥JOZn
fly2

1(8111 - B122)(T0h2/8) + (8121 - B111)(ToZ~x/2) + 2

+ (B122 + 8111)(T1h
2/24) + (B121 -111)(T1Zx/3h) (B-5)

+ (0122 - '112)(T1 z 3/3h)]sin ax sin By

Similarly,

NT . ((8211- 222)(Toh
2/8) )(T0Z 2/2) + ('222- .212) (Toz 2/2)M~y + (0221- 0211(T nx/2 +  n22y12

+ (8222 + B211)(T1h2/24) + (0221- B2]1)(TlZ3x/3h) (B-6)

3

(8222 -0212)(T1Zny/3h)]sin ax cos sy

Using the above equations in conjunction with equations (12) and (18), we

obtain the following:

R ,x = ( + 0111)(foh/2) + (121 -" 111)roznx + (122" 112)?oZny

+ ( 111 - 122 )(T1h/8) + (0121-B11 1)( 1Zx/2h) (-7)

+ (8122- 0112)(1 Zy/2h)]

18



*T BE6(B222 +B 1 )(Toh/2)+(siBiilon

AT,y + 82T11 2+ ('221- l 211)ToZnx +('222" '212)ToZny

+ ('211 - s222)(?lh/8) + (022 1 - 0211)(liZnx/2h) (B-8)

+ (0222 - /212)(lZ h)]

ATx U GE(B111 - 122)(Toh2/8) + (121 )( Z/2) + (122- 8112)

(T Z y/2) + (a122 + 8111)(T1h2/24) + (8121 - 8111)( 1Zx/3h) (5-9)

+ (21, - V11z)(T2z//3h)]

M T 'C(211 - B222)(oh 2/8)+(B221 - (B-)(ToZ 2/2)+ 2 12)
yy( 1 211 0nx (222 '212o fy (B-10)

+ (1222 + '211)(T1h /24)+(B 221 -Bz11)(TZnx/3h)+ (z22 -21 2)( 1nZy/3h)]

In a similar way, one can obtain the expressions for the above-mentioned

quantities for the remaining seven cases as follows:

Case II (znx>O, zny>O)

Tx,x 111)(Toh2) + (121- S111)(ToZ

+ (B111 - 8122)(T1h/8) + (o121 - a11)(T1zx/2h)]

-T 812 2) n

Ny, 8222 +8211+ (221- 8211

+ (01 - 222)(T1h/8) + (0221 -B211)(T1Zx/2h)]
~(8-li)

•x x * 11ll- B122)(oh2/8) + ('121 - 11)(?oZ~x/2 )

+ (B122 + )(8121 -n11)/l /)

RT 0 [ 222)(Toh/8) + 21(o~/2)
y,y t(211  B2 2 ('h/)+( 221 -

+ (0222 -B211)(l1h/24) + (0221- 211)( Zx/3h)
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Case III (znx<O, z ny>0)

Nx,x " t(8122 + 0111)(1oh/2) + (B121 ll1)(ToZny)

+ (8122 " l11 2)(Toznx) + (0111- 0122)(TIh/8 )

-+ (8121 " 111 )('1z2 /2h) + (0122" 011 2)(T1z x/2h)]

AT+ 211)(Toh/2) + (8221 211)(oZny)

+ (a222- 0212 )(Toznx) + (8211 - 8222)(Tlh/8)

+ (0221- 2 11)(TI Z2y/2h) + (0222- 021 2)(T1Z2x/2h)]

(B-12)
x,x = 11 B122 )(Toh2/8) + (8121 .8111)(1oZ2  2)

+ (12 2 - 112)(ToZ2x/2) + (22 + 1)(1h2/24)

+ 21- 0117)(T1'z /3h) + (0122- 0l1 2)(TZfzx/3h)]

AT x [((o2/8 +) z2)y y 8211/ 222) + (B221 - 8211)(1'z 2 /2)

+ (0222 -021 2)(ToZ /2) + (8222 + 8211)(11h
2/24)

(221 -821 1)(Tlzy/3h) 8- z)(TZ /3h)]
fly +(0222- 212 1 x

Case IV (znx<O, Z ny<0)

- x [(8122 + 8111 )(T0h/2) + (8122 .2)(ToZ ny)

+ ( 111 -8 122)(lh/8) + )(T1Z y/2h)]

T 8[(8222 + 8211)(1oh/2) + (8222 8221)(loZny)

+ (8211 -B 222 )(T1h/8) + (8222 -s 221)(t Z~y/2h)]
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Q((1]B~f)(' 0h8)+ (012i 0 2 )(Tz~ /2)

+ (0122 + 111)(?1h2 /24) + (0122- 4121)(T 1z 3 /3h)j (B-13)

";. 01(0211 - 8222)(1' 0h /8) + (8222 - S221)(l' 0 z n/ 2 )

+(8222 + 0211)(1'1h
2/24) + (0222-B0221)(1' 1Z3/3h)]

For neutral surface going out of plane,

X, 8 1(121 + B112)(T /2) + (al18l)~I)

A1 '~~~ 121 21 )?0

QC 0(8 2 1 +8112)(fO/2) + (8121 - B1l)(l'I/8))

AT ' C 8 1,12p)('0/8) + (8121 + 0112)(?1124))

'C 8('221 - 82l2)(1'O/8) +(21 82)(T /24)]

Case VII (z <-0'.5, z >~s

AT+-

y y 'E (8211 + 212)C1'o/2) +(8211 S212)(1'/8)] B-6

T * OE(81 11  8172 )(TO/8) + (0111 + 0112)(T,/24)]

AT, 8C(2 21v8212)(1o/8) +. (022 + 8212) (TI/24)]

CaseVII znx>.5, ny 021

xRT' oCOlll+ 112)(O/2 + (111 '11)(T/8)



Case VIII (z ,., <-0.5, z n<-0.5)

x x ( CLB2 + 0122)(T0 12) + (02- 8122)(T1/8))

I;. y 8221 + a8222)(1'o/2) + (8 221 - 0222)(T'1/8)]

3' cd( 12 1  - 0122)1 /) 0 (121 + 122)(T 1/24)] B-i
-Ty= SU22 - 0222)(T0 /8) + (8221 + 0222)(T /24)]

For a single layer, change 8 112 to a 1119 B122 to B121' 8212 to 8 211 and

8222 to 8 221*
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Table I Comparison with Boley and Weiner's Results (17] for an Isotropic
Single-Layer Thin Rectangular Plate at Different Aspect Ratios
(El1/E22 " 1.00 , V12 

= V21 a 0.3 , b/h = 10)

Aspect Deflection, W/h (mun=l)
Ratio,
a/b Boley and Weiner Present

0.5 0.5300 0.5264

1.0 6.5858 6.5789

1.5 6.3112 6.3063

2.0 2.1104 2.1058

Table 2 Elastic Properties for Two Tire-Cord/Rubber, Unidirectional, Bimodulus

Composite Materialsa

Aramid-Rubber Polyester-Rubber

Property and Units kl k=2 k-l k=2

Longitudinal Young's modulus, GPa 3.58 0.0120 0.617 0.0369

Transverse Young's modulus, GPa 0.00909 0.0120 0.00800 0.0106

Major Poisson's ratio, dimensionlessb 0.416 0.205 0.475 0.185

Longitudinal-transverse shear modulus, GPa 0.00370 0.00370 0.00262 0.00267

Transverse-thickness shear modulus, GPa 0.00290 0.00499 0.00233 0.00475

aFiber-direction tension is denoted by kal, and fiber-direction compression

bby k-2.It is assumed that the minor Poisson's ratio is given by the reciprocal
,relation.
It is assumed that the longitudinal-thickness shear modulus is equal to this
one.
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Table 3 Neutral-Surface Positions and Dimensionless Deflections for Rectangular
Plates of Single-Layer 00 Aramid-Rubber and Polyester Rubber Determined
by Two Different Methods (b/h=lO.O, T1=l.0, To=O.0)

Aspect Zx  Z
Ratio ** ** ** ** ** **

a/b C.F. F.E. C.F. F.E. C.F. F.E.

Aramid-Rubber:

0.5 0.03478 0.03486 0.03059 0.03059 0.2853 0.2807

0.75 0.08147 0.08159 0.04449 0.04441 0.2143 0.2120

1.0 0.1522 0.1523 0.06259 0.06259 0.1332 0.1323

1.25 0.2485 0.2485 0.07970 0.07968 0.07699 0.07699

1.50 0.3624 0.3624 0.08850 0.08849 0.04492 0.04482

1.75 0.4792 0.4790 0.08612 0.08612 0.02843 0.02838

2.0 0.5880 0.5876 0.07491 0.07491 0.01987 0.01986

Polyester-Rubber:

0.5 0.04815 0.04823 0.1031 0.1030 0.1851 0.1827

0.75 0.1157 0.1158 0.1184 0.1183 0.1068 0.1062

1.0 0.2160 0.2161 0.1308 0.1308 0.05299 0.05276

1.25 0.3410 0.3409 0.1360 0.1360 0.02552 0.02546

1.5 0.4737 0.4736 0.1332 0.1331 0.01285 0.01282
1.75 0.5975 0.5970 0.1234 0.1233 0.007329 0.007329

2.0 0.7024 0.7017 0.1078 0.1078 0.005110 0.005109

.:Wh/a, b2
C.F. denotes closed-form solution; F.E. signifies finite-element solution
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Table 4 Neutral-Surface Positions and Dimensionless Deflections for Rectangular
Plates of Two-Layer (00/900) Aramid-Rubber and Polyester-Rubber Under
Sinusoidal Thermal Loading, as Determined by Two Different Methods
(b/h - 10.0, Ti = 1.0, to = 0.0)

Aspect Zx  Zy
Ratio ** ** ** ** ,* *
a/b C.F. F.E. C.F. F.E. C.F. F.E.

Aramid-Rubber:

0.5 ............

0.75 ............

1.0 0.1710 0.1710 0.1198 0.1198 0.03631 0.03468

1.25 0.2602 0.2584 0.1162 0.1162 0.03201 0.03056

1.5 0.3508 0.3492 0.1032 0.1032 0.02873 0.02758

1.75 0.4363 0.4348 0.08413 0.08363 0.02632 0.02523

2.0 0.5139 0.5126 0.06182 0.06161 0.02457 0.02341

Polyester-Rubber:

0.5 0.09281 0.08935 0.2599 0.2541 0.08784 0.08711

0.75 0.1990 0.1870 0.2554 0.2436 0.08367 0.08356

1.0 0.3090 0.2958 0.2398 0.2294 0.07965 0.07916

1.25 0.3924 0.3816 0.2119 0.2035 0.07645 G.07630

1.5 0.4433 0.4358 0.1734 0.1679 0.07407 0.07311

1.75 0.4719 0.4662 0.1284 0.1252 0.07241 0.07000

2.0 0.4886 0.4833 0.08152 0.08041 0.07136 0.06786

* Wh/ITbz
C.F. denotes closed-form solution; F.E. signifies finite-element solution
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Fig. 1 Transverse deflection vs. aspect ratio (a/b) and side-to-
thickness ratio (b/h) for single-layer and two-layer cross-
ply plates under sinusoidal thermal loading. (material:
polyester-rubber)
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Fig. 2 Neutral-surface location vs. aspect ratio for single-
layer (00) rectangular plates under sinusoidal thermal
loading. (material: aramid-rubber, b/h = 10)
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Fig. 3 Neutral-surface location vs. side-to-thickness ratio for
single-layer square plates under sinusoidal thermal loading
(material: aramld-rubber)
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Fig. 4 Neutral-surface location vs. aspect ratio for two-layer
cross-ply (00/900) rectangular plates under sinusoidal
thermal loading (material: polyester-rubber, b/h 10)
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Fig. 5 Neutral-surface location vs. side-to-thickness ratio for
two-layer cross-ply (0/90) square plates under sinusoidal
thermal loading (material: polyester-rubber)
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are obtained for deflections and neutral-surface positions associated with
normal strains in both of the in-plane coordinates. The closed-form and
finite-element results are found to be in good agreement.
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